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Abstract

The dynamic member stiffness matrix of a three-dimensional shear beam with doubly asymmetric cross-
section is derived exactly from the governing, sixth-order differential equation of motion. Such a
formulation accounts for the uniform distribution of mass in the member and necessitates the solution of a
transcendental eigenvalue problem. This is achieved using the Wittrick–Williams algorithm, where the
necessary parameters are developed using a generalised procedure. An example is given to clarify the
theory, together with a small parametric study that indicates when lateral–torsional coupling may safely be
ignored. The work also holds considerable potential in its application to the approximate analysis of
asymmetric, multi-storey, three-dimensional frame structures.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Exact dynamic member stiffness matrices (exact finite elements) that are developed from the
solution of the governing differential equations have been available for beam-column members
for many years. However, such a formulation leads to a transcendental eigenvalue problem that is
often intractable. Early formulations [1–5] were prone to missing roots, since they did not have the
benefit of the Wittrick–Williams (W–W) algorithm [6,7], which enables any required natural
frequency to be converged upon to any required accuracy. Today, the algorithm has been
see front matter r 2005 Elsevier Ltd. All rights reserved.
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incorporated into an extensive range of elements that can be used in the analysis of two- and
three-dimensional framed structures formed from members ranging from straight Bernoulli–Euler
beam columns to curved Timoshenko beams [8–12].
In recent years, the coupled bending–torsional vibration of beams that have a singly

asymmetric cross-section has been addressed by a small number of investigators using the exact
approach. In such beams the shear centre and the centre of mass are not coincident, so the
translational and torsional modes are inherently coupled as a result of this offset [13]. Hallauer
and Liu [14] and Friberg [15,16] formulated the dynamic stiffness matrix of a bending–torsion
coupled beam by using successive matrix operations to obtain the resulting dynamic stiffness
matrix numerically, whereas Banerjee [17,18] derived the equivalent symbolic expressions.
Banerjee and Williams [19] later developed the explicit analytical expressions for the case of a
Timoshenko beam and subsequently Banerjee et. al. [20] included the effects of warping.
This paper develops the exact dynamic stiffness matrix for a three-dimensional ‘shear beam’

with doubly asymmetric cross-section. Such a beam has the unusual theoretical property that it
allows for both torsional and shearing deformation, but not bending deformation. The authors
are unaware of any other work involving the vibration of shear beams, despite the fact that in the
present case their use leads to a particularly simple member stiffness matrix that can be used very
efficiently in the approximate determination of the lower natural frequencies of three-dimensional,
multi-bay, multi-storey framed structures [21], including those that are doubly asymmetric on
plan and which may contain step changes in member properties at one or more storey levels.
However, a full description of the way in which the theory developed herein can be applied to such
structures is beyond the scope of the current paper.
2. Theory

Fig. 1(a) shows a uniform, three-dimensional shear beam of length L, with doubly asymmetric
cross-section. The origin of the coordinate system is located at the shear centre S, with the result
that the elastic axis coincides with the z-axis. Point C on the cross-section denotes the centre of
mass and its location in the coordinate system Sxy is given by xc and yc. The resulting mass axis
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Fig. 1. (a) coordinate system and notation for a three-dimensional shear beam with doubly asymmetric cross-section,

(b) typical displacement configuration of a cross-section.
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then runs parallel to the z-axis through xc, yc. When the elastic axis and the mass axis of a beam
do not coincide, the lateral and torsional motion of the beam will always be coupled in one or
more planes.
During vibration, the displacement of the mass centre at any time t in the x–y plane can be

determined as the result of a pure translation followed by a pure rotation about the shear
centre, see Fig. 1. During the translation phase the shear centre S moves to S0 and the mass centre
C moves to C0, displacements in each case of u(z, t) and v(z, t) in the x and y directions,
respectively. During rotation, the mass centre moves additionally from C0 to C00, an angular
rotation of jðz; tÞ about S0. The resulting translation of the mass centre in the x–z and y–z planes,
respectively, is

uðz; tÞ � ycjðz; tÞ, (1a)

vðz; tÞ þ xcjðz; tÞ. (1b)

The coupled equations of motion that stem from the three orthogonal planes can now be
developed from Figs. 1 and 2. In the x–z and y–z planes, this is achieved by equating the resultant
shear force on the element to the corresponding product of mass and acceleration. In the x–y

plane, the resultant torsional moment about the shear centre is equated to the sum of the moments
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Fig. 2. End conditions for forces and displacements of a three-dimensional, doubly asymmetric shear beam (a) sign

convention for force and displacement for the shear beam in the x–z plane (b) sign convention for force and

displacement for the shear beam in the y–z plane.
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of the mass accelerations about the same point. This yields

qQxðz; tÞ

qz
¼ m

q2uðz; tÞ
qt2

� yc

q2jðz; tÞ
qt2

� �
, (2a)

qQyðz; tÞ

qz
¼ m

q2vðz; tÞ
qt2

þ xc
q2jðz; tÞ

qt2

� �
, (2b)

qTðz; tÞ

qz
¼ m r2m

q2jðz; tÞ
qz2

� yc

q2uðz; tÞ
qt2

þ xc

q2vðz; tÞ
qt2

� �
, (2c)

where m is the mass/unit length of the member. The shear forces Qx(z, t), Qy(z, t) and the torsional
moment T(z, t) can be obtained from the appropriate stress/strain relationships as

Qxðz; tÞ ¼ GAx

quðz; tÞ

qz
, (3a)

Qyðz; tÞ ¼ GAy

qvðz; tÞ

qz
, (3b)

Tðz; tÞ ¼ GJ
qjðz; tÞ

qz
(3c)

in which GAx and GAy are the effective shear rigidities of the beam in the x and y directions,
respectively, GJ is the torsional rigidity of the cross-section and rm is the polar mass radius of
gyration of the cross-section about the z-axis.
Substituting Eqs. (3) into Eqs. (2) yields the required equations of motion as

GAx

q2uðz; tÞ
qz2

�m
q2uðz; tÞ

qt2
þmyc

q2jðz; tÞ
qt2

¼ 0, (4a)

GAy
q2vðz; tÞ
qz2

�m
q2vðz; tÞ
qt2

�mxc
q2jðz; tÞ

qt2
¼ 0, (4b)

GJ
q2jðz; tÞ

qz2
þmyc

q2uðz; tÞ
qt2

�mxc
q2vðz; tÞ
qt2

�mr2m
q2jðz; tÞ

qz2
¼ 0. (4c)

Assuming harmonic motion, the instantaneous displacements can be written as

uðz; tÞ ¼ UðzÞ sin ot; vðz; tÞ ¼ V ðzÞ sin ot; jðz; tÞ ¼ FðzÞ sin ot, (5a2c)

where UðzÞ, V ðzÞ and FðzÞ are the amplitudes of the sinusoidally varying displacements.
Substituting Eqs. (5) into Eqs. (4) and re-writing in non-dimensional form gives

U 00 xð Þ þ o2l2xU xð Þ � yco
2l2xF xð Þ ¼ 0, (6a)

V 00 xð Þ þ o2l2yV xð Þ þ xco2l2yF xð Þ ¼ 0, (6b)

F00 xð Þ � 1=r2m
� �

yco
2l2jU xð Þ þ 1=r2m

� �
xco2l2jV xð Þ þ o2l2jF xð Þ ¼ 0, (6c)
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where

l2x ¼ mL2
�

GAx; l2y ¼ mL2
�

GAy; l2j ¼ r2mðmL2
�

GJÞ and x ¼ ðz=LÞ. (7a2d)

Eqs. (6) can be re-written in the following matrix form:

D2 þ o2l2x 0 �yco
2l2x

0 D2 þ o2l2y xco2l2y

�ð1=r2mÞyco
2l2j ð1=r2mÞxco2l2j D2 þ o2l2j

2
664

3
775

UðxÞ

V ðxÞ

FðxÞ

2
64

3
75 ¼ 0 (8)

in which D ¼ d=dx.
Eq. (8) can be combined into one equation by eliminating either U, V or F to give the sixth-

order differential equation

D2 þ o2l2x 0 �yco
2l2x

0 D2 þ o2l2y xco2l2y

�ð1=r2mÞyco
2l2j ð1=r2mÞxco2l2j D2 þ o2l2j

��������

��������
W ðxÞ ¼ 0, (9)

where W ¼ U , V or F.
The solution of Eq. (9) is found by substituting the trial solution W ðxÞ ¼ esx to yield the

characteristic equation

b2
þ l2x 0 �ycl

2
x

0 b2
þ l2y xcl

2
y

�ycl
2
j xcl

2
j r2mðb

2
þ l2jÞ

��������

��������
¼ 0, (10)

where b2
¼ ðs=oÞ2.

Eq. (10) is a cubic equation in the frequency parameter b2 and it can be proven (Appendix) that
it always has three negative real roots. Let these three roots be �b2

1, �b2
2 and �b23, where b2

j ð j ¼

1; 2; 3Þ are all real and positive. Therefore

s

o

� �2
¼ �b2

j giving s ¼ �iobj ð j ¼ 1; 2; 3Þ where i ¼
ffiffiffiffiffiffiffi
�1
p

. (11)

It follows that the solution of Eq. (9) can be written in the form

W xð Þ ¼ C1 cos b1oxþ C2 sin b1oxþ C3 cos b2ox

þ C4 sin b2oxþ C5 cos b3oxþ C6 sin b3ox. ð12Þ

Eq. (12) represents the solution for U xð Þ, V xð Þ and F xð Þ, since they are all related via Eq. (8).
They can be written individually as

U xð Þ ¼ tu
1 C1 cos b1oxþ C2 sin b1oxð Þ þ tu

2 C3 cos b2oxð

þC4 sin b2oxÞ þ tu
3 C5 cos b3oxþ C6 sin b3oxð Þ, ð13aÞ

V xð Þ ¼ tv
1 C1 cos b1oxþ C2 sin b1oxð Þ þ tv

2 C3 cos b2oxð

þC4 sin b2oxÞ þ tv
3 C5 cos b3oxþ C6 sin b3oxð Þ, ð13bÞ
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F xð Þ ¼ C1 cos b1oxþ C2 sin b1oxþ C3 cos b2ox

þ C4 sin b2oxþ C5 cos b3oxþ C6 sin b3ox ð13cÞ

in which the constants tu
j and tv

j ð j ¼ 1; 2; 3Þ are given by

tu
j ¼

ycl
2
x

l2x � b2j
ð j ¼ 1; 2; 3Þ, (14a)

tv
j ¼
�xcl

2
y

l2y � b2
j

ð j ¼ 1; 2; 3Þ. (14b)

Substituting Eqs. (5) and (13) into Eq. (3) yields the equations for the lateral shear forces and
torsional moment as

QxðzÞ ¼ GAx
dUðzÞ

dz
¼

1

L
GAx

dU xð Þ
dx

, (15a)

QyðzÞ ¼ GAy

dV ðzÞ

dz
¼

1

L
GAy

dV xð Þ
dx

, (15b)

TðzÞ ¼ GJ
dFðzÞ
dz
¼

1

L
GJ

dF xð Þ
dx

. (15c)

The nodal forces and displacements can now be defined in the member coordinate system of
Figs. 2(a) and (b), as follows

At x ¼ 0 : U ¼ U1; V ¼ V1; F ¼ F1; Qx ¼ �Q1x; Qy ¼ �Q1y; T ¼ �T1, (16a)

At x ¼ 1 : U ¼ U2; V ¼ V2; F ¼ F2; Qx ¼ Q2x; Qy ¼ Q2y; T ¼ T2. (16b)

Then the nodal displacements can be determined from Eqs. (13) as

d1

d2

" #
¼

E 0

0 E


 �
I 0

C S


 �
Co

Ce

" #
, (17)

where

d1 ¼

U1

V1

F1

2
64

3
75; d2 ¼

U2

V2

F2

2
64

3
75; Co ¼

C1

C3

C5

2
64

3
75; Ce ¼

C2

C4

C6

2
64

3
75; E ¼

tu
1 tu

2 tu
3

tv
1 tv

2 tv
3

1 1 1

2
64

3
75,

C ¼

Cb1o 0 0

0 Cb2o 0

0 0 Cb3o

2
64

3
75; S ¼

Sb1o 0 0

0 Sb2o 0

0 0 Sb3o

2
64

3
75,

I is the unitmatrix; Sbjo ¼ sin bjo andCbjo ¼ cos bjo ð j ¼ 1; 2; 3Þ. (18)
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Hence the vector of constants CoCe½ �T can be determined from Eq. (17) as

Co

Ce

" #
¼

I 0

C S


 ��1
E 0

0 E


 ��1 d1

d2

" #
. (19)

In similar fashion the vector of nodal forces can be determined from Eqs. (15) as

p1

p2

" #
¼

DEb 0

0 DEb


 �
0 �I

�S C


 �
Co

Ce

" #
, (20)

where

p1 ¼

Q1x

Q1y

T1

2
64

3
75; p2 ¼

Q2x

Q2y

T2

2
64

3
75; D ¼

o
L

GAx 0 0

0 GAy 0

0 0 GJ

2
64

3
75 and b ¼

b1 0 0

0 b2 0

0 0 b3

2
64

3
75. (21)

Thus the required stiffness matrix can be developed by substituting Eq. (19) into Eq. (20) to give

p1

p2

" #
¼

DEb 0

0 DEb


 �
0 �I

�S C


 �
I 0

C S


 ��1
E 0

0 E


 ��1 d1

d2

" #
(22)

or

p ¼ kd. (23)

The stiffness relationship of Eq. (23) is general and can be used in the normal way to assemble
more complex forms. The required natural frequencies of the resulting structure are determined
by evaluating its overall dynamic stiffness matrix at a trial frequency o� and using the
Wittrick–Williams algorithm to establish how many natural frequencies have been exceeded by
o�. This clearly provides the basis for a convergence procedure that can yield the required natural
frequencies to any desired accuracy. The corresponding mode shapes can then be recovered by
any appropriate method [8].
3. Wittrick–Williams algorithm

The dynamic structure stiffness matrix, K, when assembled from the member stiffness matrices,
yields the required natural frequencies as solutions of the equation

KD ¼ 0, (24)

where D is the vector of amplitudes of the harmonically varying nodal displacements and
K is a function of o, the circular frequency. In most cases the required natural frequencies
correspond to Kj j, the determinant of K, being equal to zero. However, K is developed
from exact member theory and the determinant is therefore a highly irregular, transcendental
function of o. Thus any trial and error method which involves computing Kj j ¼ 0 and
noting when it changes sign through zero can miss roots. This can be overcome by use of the
Wittrick–Williams algorithm [6,7] which has received wide attention in the literature [22]. The



ARTICLE IN PRESS

B. Rafezy, W.P. Howson / Journal of Sound and Vibration 289 (2006) 938–951 945
algorithm states that

J ¼ J0 þ sfKg, (25)

where J is the number of natural frequencies of the structure exceeded by some trial frequency, o�,
J0 is the number of natural frequencies that would still be exceeded if all members were clamped at
their ends so as to make D ¼ 0 and s{K} is the sign count of the matrix K. s{K} is defined in Ref.
[7] and is equal to the number of negative elements on the leading diagonal of the upper triangular
matrix obtained from K, when o ¼ o�, by the standard form of Gauss elimination without row
interchanges.
From the definition of J0, it can be seen that

J0 ¼
X

Jm, (26)

where Jm is the number of natural frequencies of a member, with its end clamped, which have been
exceeded by o�, and the summation extends over all members of the structure. In the present case
it is possible to determine the value of Jm symbolically, using a direct approach, as follows.
The end conditions for a clamped–clamped member are

d1 ¼ d2 ¼ 0. (27)

If Eq. (27) is substituted into Eq. (17) it is clear that the condition for non-trivial
solutions is

E 0

0 E

����
���� I 0

C S

����
���� ¼ 0. (28)

However, it is easy to show that the left-hand determinant can never be zero for a doubly
asymmetric cross-section. Thus, noting that the right-hand determinant is that of a lower
triangular matrix, Eq. (28) is only satisfied when the product of its significant leading diagonal
terms is zero, i.e.

Y3
j¼1

Sbjo ¼ 0 (29)

which is satisfied when

ok
j ¼

kp
bj

; j ¼ 1; 2; 3; k ¼ 1; 2; 3; . . . (30)

so Jm for any trial frequency o� can be found from

Jm ¼ int
o�

p=b1

� �
" #

þ int
o�

p=b2

� �
" #

þ int
o�

p=b3

� �
" #

(31)

in which int represents the image integer function, i.e. the greatest integer oo�
�
ðp=bjÞ, j ¼ 1; 2; 3.
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4. Numerical results

Two examples are given in this section to clarify the foregoing theory. The first example
demonstrates the application of the theory to the analysis of a stepped, three-dimensional shear
beam with doubly asymmetric cross-section. The second example comprises a small parametric
study that investigates the effects of eccentricity and the non-dimensional ratio ly=lj on the basic
coupled natural frequencies of a shear cantilever with a singly asymmetric cross-section.

Example 1. A three-dimensional stepped shear beam with doubly asymmetric cross-section is now
considered. The beam has both ends clamped and the properties of each of the stepped sections
are given in Fig. 3. Young’s modulus, E, for all sections is taken as 2� 1010N/m2. The
eccentricities and polar mass radius of gyration of the cross-section about the z-axis for all
sections in the coordinate system of Fig. 1 are xc ¼ 0:2m, yc ¼ 0:3m and r2m ¼ 0:23m2.
The results for this example are given in Table 1. The second and third columns show the first

12 coupled and uncoupled natural frequencies of the beam obtained from the present theory, the
latter being the frequencies calculated when xc ! yc ! 0. Table 2 validates the uncoupled
frequencies for the structure of Example 1, by re-calculating them using the appropriate, exact
dynamic stiffness matrix obtained from second-order theory corresponding to uncoupled motion
in the x–y, x–z and y–z planes taken in turn. The results show exact agreement with the uncoupled
natural frequencies obtained from the three-dimensional approach. However the authors are
unaware of any published results or any other method that could reasonably be used to validate
the results of the coupled natural frequencies.

Example 2. The second example comprises a small parametric study on a uniform cantilevered
shear beam with singly asymmetric cross-section. It illustrates the effect on the natural frequencies
of varying the eccentricity of the mass axis with respect to the elastic axis and the effect of varying
the non-dimensional ratio ly=lj, which is a measure of the relationship between the torsional and
translational rigidities. The basic member properties are Young’s modulus ¼ 2� 1010N/m2,
length ¼ 6m, mass/unit length ¼ 5� 103 kg/m, while the cross-section is symmetric about the
x-axis (yc ¼ 0) and rmc ¼ 0:1m, where rmc is the polar mass radius of gyration of the cross-section
about the mass centre.
m  = 4500  kg/m

GA   = 7×109 N

GA = 5×109 N

2L  = 6 m1L  = 6 m

1

y1GA = 6×109 N
x1GA   = 8×109 N x2

y2

2

1

1

m  = 5000  kg/m

1

L

2

2L

2

3L  = 6 m

GA   = 5×109 N

GA = 4×109 N
x3

y3

3

m  = 4000  kg/m3

3L

3

GJ    = 2×109 Nm2 GJ    = 1.8×109 Nm2 GJ    = 1.3×109 Nm2

Fig. 3. Stepped shear beam with doubly asymmetric cross-section.



ARTICLE IN PRESS

Table 1

The coupled and uncoupled natural frequencies of the beam of Example 1 using the present three-dimensional

approach

Freq. no. Coupled frequencies (Hz) Uncoupled frequencies (Hz) (xc ¼ yc ¼ 0)

1 24.90 29.14

2 30.59 33.23

3 50.47 34.97

4 61.81 58.44

5 67.40 67.68

6 74.70 71.38

7 91.55 86.95

8 100.36 99.76

9 123.02 105.35

10 125.77 116.72

11 137.26 134.28

12 149.38 141.46

Table 2

The uncoupled natural frequencies of the beam of Example 1 using two-dimensional theory on each plane in turn

Freq. no. x–z plane (Hz) y–z plane (Hz) x–y plane (Hz)

1 33.23 29.14 34.97

2 67.68 58.44 71.38

3 99.76 86.95 105.35

4 134.28 116.72 141.46

B. Rafezy, W.P. Howson / Journal of Sound and Vibration 289 (2006) 938–951 947
Three non-dimensional parameters are considered, namely the ratio ly=lj, the coupling factor,
fc, and the eccentricity ratio e. Expressions for fc and e are given as

f c ¼
minðo1y;o1jÞ

o1
, (32)

where o1y is the fundamental uncoupled frequency in the y–z plane, o1j the fundamental
uncoupled frequency in the x–y plane, o1 the fundamental coupled frequency and

e ¼ x2
c

�
r2m. (33)

The coupling factor indicates the effect of eccentricity on the coupled fundamental frequency,
while the eccentricity parameter represents a measure of the mass centre offset from the shear
centre and is equal to zero in the case of two-fold symmetry. It is clear that e must lie in the range
0pep1, since r2m ¼ r2mc þ x2

c , and the ratio ly=lj is assumed to vary from 0.2 to 5.
The graph of Fig. 4 shows the variation of fc with ly=lj for a range of e values. It can be seen

that maximum coupling occurs when ly ¼ lj. It also shows that the greater the mass centre offset,
the greater the ratio of uncoupled to coupled natural frequencies becomes. Furthermore, it can be
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Fig. 4. Variation of the coupling factor fc versus ly=lj for various values of e. e ¼ 0:05, ; e ¼ 0:25, ;

e ¼ 0:45, ; e ¼ 0:65, ; e ¼ 0:95, .
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concluded that the effect of coupling between modes is less than 10% when eo0:05 or
0:5oly=ljo2 and may therefore be ignored to engineering accuracy.
5. Conclusions

An exact dynamic stiffness matrix has been developed for a three-dimensional shear beam with
doubly asymmetric cross-section. The theory has been applied to the frequency analysis of a series
of uniform shear cantilevers with singly asymmetric cross-sections. The results show that the most
intense coupling of the modes occurs when the non-dimensional torsional and translational
rigidities are equal. Guidance has been given as to when the effect of coupling can safely be
ignored.
Appendix. The roots of Eq. (10)

For convenience Eq. (10) is re-written as a cubic function f ðaÞ in which a ¼ b2. This yields

f ðaÞ ¼

aþ l2x 0 �ycl
2
x

0 aþ l2y xcl
2
y

�ycl
2
j xcl

2
j r2m aþ l2j

� �
���������

���������
. (A.1)

The work of this appendix now proves that the three roots that make f ðaÞ ¼ 0 are always negative
real numbers. As a preliminary it should be noted that all the coefficients of Eq. (A.1) have
real finite values. The typical cubic curve corresponding to f ðaÞ is thus smooth and continuous
and completely defined in the region of interest by the location of its roots and its value at a ¼ 0.
See Fig. A.1(a).
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Fig. A.1. Diagram of f ðaÞ versus a for the three cases of (a) l2x ¼ l2y ¼ l2 (b) �l2xo� l2y (c) �l2yo� l2x.
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From Eq. (A.1), f ðaÞ may be written as

f ðaÞ ¼ r2m aþ l2x
� �

aþ l2y
� �

aþ l2j
� �

� x2
cl

2
yl

2
j aþ l2x
� �

� y2
cl

2
xl

2
j aþ l2y
� �

. (A.2)

By inspection it can be seen that if lx ¼ ly ¼ l, Eq. (A.2) becomes

f ðaÞ ¼ aþ l2
� �

r2m aþ l2
� �

aþ l2j
� �

� l2l2j x2
c þ y2

c

� �h i
(A.3)

and the roots may be calculated from

aþ l2
� �

a2 þ baþ g
� 


¼ 0, (A.4)

where

b ¼ l2 þ l2j and g ¼ l2l2j r2m � x2
c � y2c

� �
=r2m. (A.5)

The required roots aj ð j ¼ 1; 2; 3Þ are therefore

a1 ¼ �l
2; 2a2 ¼ �b� D and 2a3 ¼ �bþ D, (A.6)

where

D2 ¼ b2 � 4g ¼ l2 � l2j
� �2

þ 4l2l2j x2
c þ y2

c

� �
=r2m (A.7)

a1 is clearly a negative real root, as are a2 and a3, since

D40; g40 and � bo0. (A.8)

The more general result in which l2xal2y can now be argued as follows. Consider the value of f ð0Þ
that is obtained by substituting a ¼ 0 in Eq. (A.2). This gives

f ð0Þ ¼ r2m � x2
c � y2c

� �
l2xl

2
yl

2
j (A.9)

in which rm is the polar mass radius of gyration about the shear centre, S, and can be related to the
polar mass radius of gyration about the centre of mass, rmc, through the following equation:

r2m ¼ r2mc þ x2
c þ y2

c (A.10)
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therefore

f ð0Þ ¼ r2mcl
2
xl

2
yl

2
j (A.11)

which is the product of four positive parameters and therefore f ð0Þ is always positive with a
limiting (trivial) value of zero. It is equally easy to show that

f ð1Þ ¼ 1 and f ð�1Þ ¼ �1. (A.12)

In similar fashion, substituting the values of a ¼ �l2x and a ¼ �l2y into Eq. (A.2) yields

f �l2x
� �

¼ �y2cl
2
xl

2
j l2y � l2x
� �

(A.13)

and

f �l2y
� �

¼ �x2
cl

2
yl

2
j l2x � l2y
� �

. (A.14)

We now wish to consider the two cases in which �l2xo� l2y and �l
2
yo� l2x and note that l2x ¼ l2y

corresponds to the case originally discussed.

Thus, when �l2xo� l2y, Eqs. (A.11)–(A.14) give

f ð0Þ40; f �l2y
� �

o0; f �l2x
� �

40 and f ð�1Þo0. (A.15)

These imply that there are three negative real roots of the function f ðaÞ in the intervals ð0;�l2yÞ,
ð�l2y;�l

2
xÞ and ð�l

2
x;�1Þ. See Fig. A.1(b).

Similarly, when �l2yo� l2x, Eqs. (A.11)–(A.14) give

f ð0Þ40; f �l2x
� �

o0; f �l2y
� �

40 and f ð�1Þo0 (A.16)

which again imply that there are three negative real roots of the function f ðaÞ in the intervals
ð0;�l2xÞ, ð�l

2
x;�l

2
yÞ and ð�l

2
y;�1Þ. See Fig. A.1(c).
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